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Abstract

Lasso is increasingly found in the economics literature, but boosting, which is
a simple and flexible high-dimensional estimation procedure that has been used
successfully in genetics, computer science, and other fields, is not familiar to most
economists. I describe the close theoretical ties between a linear varient of general
gradient boosting, Lo-Boosting, and lasso and the conditions required for each to
guarantee prediction and model selection consistency. For the first time in the
economics literature, I compare the performance of boosting and lasso for both
variable selection and prediction accuracy. Furthermore, I address the specific issues
that arise under block-correlation typically found in macroeconomic datasets. In
simulations, I find that lasso selects a more parsimonious model that is closer to the
truth while maintaining prediction accuracy. In an application to forecasting series
in the FRED-MD dataset, I find that the forecasting performance of Lo-boost and
lasso are close to equivalent at 1 month forecast horizons and significantly better
than the AR baseline, with mixed results at the 6 month horizon. There are some
indications that a non-linear form of gradient boosting has the best performance
for longer time horizons. Since I show that lasso and boosting are not stable under
correlated data and lack of sparsity, I describe how for macroeconomic data the
variable selection output can be interpreted more robustly by aggregating variables
in groupings.
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1 Introduction

Estimation of reduced form models has a variety of applications in macroeconomics; two
primary ones are model selection and forecasting. New challenges arise in the estimation of
these models when the predictor set is very large, especially in situations where the number
of predictor variables is larger than the number of observations when OLS is not tractable.
With a large number of potential predictor variables, many of which are highly correlated
in high-dimensional macroeconomic datasets, it is difficult to distinguish between true zero
and non-zero variables; furthermore, the variance introduced by adding too many variables
can result in poor out-of-sample forecasting performance if not managed appropriately.
Some traditional methods have been applied to select models in high-dimensional settings:
for example, statistical methods like Autometrics (Doornik & Hendry, 2015). Common
factor models have also been used with success to forecast macroeconomic series using
predictor sets that are highly correlated (Stock & Watson, 2002a), (Stock & Watson,
2002b). However, statistical methods like Autometrics are computationally intensive,
and factor models, while providing good forecasting performance, don’t provide direct
variable selection that is often useful in interpreting the results from the estimation of
reduced form models.

Economists working with high-dimensional data have increasingly used machine learn-
ing methods that simultaneously provide variable selection and estimation, such as lasso
regression, ridge regression, and boosting. These methods can handle very large datasets
with computational efficiency. Lasso and boosting generally have been shown to have
comparable or lower mean-square forecast error (MSFE) in prediction tasks compared
to factor and simple linear methods, but also provide directly interpretable output (Li
& Chen, 2014), (Wohlrabe & Buchen, 2014). There has not been, however, a system-
atic comparison of lasso and boosting in the literature that also examines the limits of
their performance under collinearity and lack of sparsity that occurs in high-dimensional

macroeconomic data.



In this paper, I study the performance of lasso-type measures and a linear form of
boosting, Ls-Boost, in a macroeconomic prediction context where the accuracy of variable
selection also matters. Ng (2013) reviews criterion-based, regularization, and dimension
reduction methods of selecting predictors in a high-dimensional context using simulations
and describes the unresolvable tradeoff between prediction accuracy and consistent model
determination. It has been theoretically proven that it is not possible to select one criterion
(Yang, 2005) nor one regularization parameter for lasso (Meinshausen & Biihlmann, 2006)
that is optimal for both prediction accuracy and variable selection. Though it has not yet
been shown explicitly, boosting likely has the same optimality trade-off for the stopping
parameter. It is still interesting, however, to determine which methods have the ability
to perform both tasks well, even if optimal performance for both is not possible.

Both lasso and Ls-Boost are known to be consistent for prediction under a spar-
sity condition. Results are available for model selection consistency for lasso but only
under strict restrictions on the correlation of the predictors that are not likely to hold
in macroeconomic data. The LARS algorithm of Efron et al. (2004) united lasso and
forward stagewise regression, a variant of Lo-Boosting. Freund et al. (2017) and Hastie
et al. (2007) have separately showed that there are strong theoretical links between linear
boosting and lasso; the former shows each are the solution to a problem by subgradient
optimization and the latter shows each are differential equations that are optimal in terms
of a local optimization procedure. These authors show that a) there are versions of lasso
that provide the same solution as Ls-Boost under restrictions on the path of the lasso
coefficients as the regularization parameter varies and b) there are restricted versions of
linear boosting that provide the same solution as lasso. Understanding these theorems
provides motivation for studying the variable selection and prediction performance of lasso
and boosting together when dealing with difficulties in high-dimensional macroeconomic
data, such as collinearity and lack of sparsity.

Lasso is known to have issues with stability of coefficients and model selection consis-



tency under lack of sparsity and collinearity; this is shown in simulations and applications
to dense macroeconomic data by Giannone et al. (2017) and by Li & Chen (2014). With
slight perturbations of the data or changes in time window, the predictors selected by lasso
can change dramatically. This issue can be mitigated by using grouped lasso or elastic
net, but grouped lasso forces a manually determined structure on the lasso penalty term
that may not be desirable in a prediction context (Callot & Kock, 2014), and elastic net
still has stability issues as the penalty term is varied, which I will describe using Monte
Carlo simulations. Furthermore, alternative estimators for high-dimensional datasets such
as dynamic factor models (Stock & Watson, 2002a), do not provide output that is easily
interpretable for economic data. Boosting, on the other hand, has been studied less in the
economics literature, but has been used with great success for prediction of categorical
variables in the computer science literature. Given its close theoretical links to lasso, one
would expect that boosting would have some of the same difficulties in dense and collinear
economic applications. However, one of the key differences between lasso and boosting is
that boosting has a monotone coefficient path as the regularization parameter varies. I
examine the nuances of this theoretical difference in both simulations and applications to
macroeconomic forecasting. Along with Lo-Boosting and lasso, I also examine the perfor-
mance of a non-linear form of boosting, tree boosting, and elastic net, which is a variant
of lasso that was designed to better handle groups of correlated variables.

In simulations, I find that the performance of Ly-Boosting is even more sensitive than
lasso or elastic net to density in a block-correlated data generating process. The variable
selection results of all methods worsen under increased density and correlation. Though
significant issues arise in all methods, lasso performs the best in both prediction and model
selection when variables are highly correlated and the data generating process isn’t sparse.
However, under sparsity and reasonable collinearity Lo-boosting performance is equivalent
to regularized regression. I find that, in applications to forecasting 4 macroeconomic

series (real production, unemployment, price and interest rate series) from the FRED-MD



database (McCracken & Ng, 2016) 1, 3, and 6 months ahead, the linear high-dimensional
methods generally perform better than no-change or AR baselines, especially at the 1
month horizon, and that Ls-Boosting, elastic net, and lasso have similar MSFEs, with
no method consistently beating the others. The results indicate that linear models in
general beat more flexible non-linear alternatives such as boosted regression trees at short
time horizons, but that the non-linear boosting method does not overfit substantially. For
the 3 month horizon, where linear methods do not perform better than the AR model,
tree boosting shows marginal improvement. In selecting variables for the 1 month ahead
forecasts, the results are nearly identical for lasso and boosting, which, before examining
the theory behind the methods, would be surprising given the very different formulation
of the estimation algorithms for lasso-type methods and boosting.

Aggregating variables by the groups defined in the Fred-MD appendix results in clear
interpretation that is less likely to be muddled by issues with the correlation of the indi-
vidual series, since the blocks have low correlation between them. For example, the results
indicate that increases in output, employment and decreases in financing costs are most
closely associated with 1 month ahead increases in industrial production, which closely
follows economic intuiton. I posit, though I do not prove, that lasso and Ls-Boost are
block-consistent, meaning they correctly select variables at a block-level. I also conduct
robustness checks on the variable selection results using OLS and factor model alterna-
tives. I find that the top variables selected by lasso and Ly-Boost are highly significant in
an OLS regression. Using simple PCA-based methods to select group-specific factors, an
alternative to aggregating results in groups from high-dimensional estimation methods,
does not perform well.

Section 2 reviews related work. Section 3 describes gradient boosting and penalized
regression and interprets the methods from the perspective of various kinds of general
optimization methods. Section 4 provides an overview of the theoretical results for pre-

diction and model selection consistency and for the relationship between boosting and



lasso which motivate the applied work. Section 5 provides Monte Carlo simulations that
illustrate the issues that arise in collinear high-dimensional time series settings. Section 6
provides an application of boosting and lasso methods to prediction and variable selection

for forecasting four U.S. macroeconomic series.

2 Related Work

In this section, I briefly describe the literature on boosting and lasso for economic forecast-
ing, and other approaches that have been suggested when dealing with block-correlated

datasets.

Boosting

In the economics literature, boosting has been used for financial time series forecasting,
but the literature on boosting for macroeconomic forecasting is rather sparse. For binary
dependent variables, Ng (2014) used AdaBoost with decision stumps on a database of 132
U.S. financial and real series to identify important predictors for U.S. recessions 3m, 6m,
and 12m ahead and Dopke et al. (2017) uses boosted decision trees to predict German
recessions with lower out of sample performance than probit approaches. Both papers look
at which variables boosting selects as important, using Friedman’s importance coefficient
for boosting with decision trees, and finding that term spreads, as expected, are the most
important predictors of recessions.

For continuous dependent variables, Bai & Ng (2009) uses boosting to select predictors
in factor-augmented regressions and finds that prediction performance is improved by the
boosting selection method compared to criterion-based techniques. Wohlrabe & Buchen
(2014) tests the forecasting performance of boosting for U.S., Euro area and German data
and Buchen & Wohlrabe (2011) evaluates boosting compared to dynamic factor models

and model averaging methods for forecasting U.S. industrial production. Lehmann &



Wohlrabe (2017) uses boosting to forecast regional German economic indicators and finds
that boosting outperforms the benchmark for regional economic forecasting. Robinzonov
et al. (2012) uses boosting with nonlinear base learners in a high-dimensional time se-
ries setting to estimate nonlinear lag functions. Taieb et al. (2014) proposes a boosting
autoregression procedure and evaluates performance in two time series forecasting com-
petitions. Few of the papers in the boosting forecasting literature attempt to evaluate the
prediction models in terms of variable selection, apart from Lehmann & Wohlrabe (2016)
which looks at counts of how often a variable is selected to forecast German industrial

production at different time horizons to determine which are important.

Lasso

Li & Chen (2014) evaluate the performance of several lasso-based approaches, including
regular lasso, grouped lasso, and elastic net, compared to dynamic factor models for
twenty U.S. macroeconomic variables. They find that lasso approaches are better than
dynamic factor models in out of sample forecasting exercise and that combining lasso
and dynamic factor model forecasts are better than either method individually. They
also suggest manually grouping predictors into economically meaningful blocks and using
group lasso or elastic net to improve the interpretability and stability of such models.
Callot & Kock (2014) evaluate the forecasting accuracy and variable selection of lasso and
some of its variants, adaptive and adaptive group lasso on a large U.S. macroeconomic
dataset. They analyze the performance of the methods for different groups and find that
lasso performs best, but the adaptive versions perform similarly to factor models. Kim &
Swanson (2011) uses recursive estimation to test the predictive accuracy of a variety of
models based on principal components or shrinkage methods, including lasso, boosting,
elastic net, factor models, and various model combination methods. They find that factor-
augmented models constructed with shrinkage methods, such as those introduced in Bai

& Ng (2009), have the lowest out of sample error when predicting eleven macroeconomic



variables at various time horizons.

Models for Block-Correlated Data

Variants of lasso have been proposed to vary the penalty term to better account for
blocks of related variables in data, such as elastic net, grouped lasso and the adaptive
grouped lasso (Zou & Hastie, 2005), (Yuan & Lin, 2006), (Wang & Leng, 2008). I include
elastic net in the simulation and application results. Factor models taking into account
the block-structure of economic data have also been introduced. For example, Moench
et al. (2013) introduces a hierarchical model that includes block-specific factors within
economically-meaningful blocks along with common factors to increase interpretability of
dynamic factor models. I use a simplified version of the model to test the robustness of
the variable selection results in Section 6. Bai & Ng (2009) derives Block Boosting from
modifying the typical linear boosting procedure in a factor augmented regression setting

to take into account the relationship between a variable and its lags.

Comparing Approaches

In the biostatistics literature, Hepp et al. (2016) compare the performance of variable
selection stability and forecasting for Lo-boosting and lasso in a variety of simulated
settings, varying collinearity, true sparsity, and signal-to-noise ratio, and finds that results
are similar for both methods. Ng (2013) studies model selection and prediction together in
a high-dimensional simulation using monte-carlo methods and finds that factor methods
perform more accurately at both tasks when the data generating process is dense, and

that regularization methods perform better when the data generating process is sparse.



3 Model and Methods

In this section, I introduce the model and notation used in Sections 5 and 6. I also describe
the estimation procedures in detail, which is necessary for understanding the theory in

Section 4 and the results in Section 5 and 6.

3.1 Notation

n n n

Let x be a vector in R [|z[|; = (@), M2l = 2(a)?, [lalh = X il |l2llee =
i=1 i=1 i=1

max; |x;.

3.2 Model

For the forecasting simulations and predictions below I used restricted versions of the
below predictive model, which is common in the forecasting literature. y; fromt¢ =1,..., T
is the stationary-transformed, continuous-valued, target variable. There are V variables
xy from t = 1,...,T available that can potentially explain y;, along with their lags and

lags of y, itself, up to a maximum of K lags.

K V K
Yi+h = Boo + Z Y-k + Z Z Bikti,(t—k) T €r+h, t=1,....T (3.1)
k=0

i=1 k=0
To simplify the notation in z; denote the p = (V x (k+ 1) + (k + 1) + 1) row vector
of RHS variables for y;,, at time ¢ and let S denote the possibly sparse vector of RHS
parameters relating the predictors to y;,,. It is possible that p >> T and that x; contains

many collinear predictors. The above equation is summarized as

Yirh = T+ €14n, t=1,...,T (3.2)



3.3 Estimation Methods

In the machine learning literature that derived lasso and boosting, procedures for esti-
mating predictive functions for a dependent variable from a set of possible predictors are
known as learning algorithms when the performance of the method improves with addi-
tional data. A simple learning algorithm is linear regression, for example. A learning
algorithm takes as input a labeled sequence of training examples (z1,¥1), ..., (7, yr) and
uses these to construct a function ¢(z;) that will classify new instances x;. y; may be
categorical, binary, or real-valued. Each of the below models is a learning algorithm for
continuous y; that has applicability to high-dimensional problems, where the dimension

of z;, p, is larger than T.

3.3.1 Lasso-Type Methods

Given observations on y; and each of p observed predictors z; = (x4, ...,xy,) for t =
1,...,T. Under p >> T, OLS is not defined, since it requires the X’'X/T to be positive
definite. Furthermore, in high-dimensional collinear settings, even when p < T, OLS does
not perform well for prediction or interpretation. Tibshirani (1996) proposed L; penalized
regression, which performs variable selection and model estimation simultaneously, and
shows improved performance in prediction and model parsimony compared to OLS due
to reduction in variance introduced by the penalty term, A, at the cost of the introduction

of bias.

T P
flasso) — gre min > e — B+ NB (3.3)
=1 j=1
The resulting lasso function is (%55 (z,) = z,30as5°)

Elastic Net

Zou & Hastie (2005) propose elastic net to address some of the issues that lasso has when



predictors are high-dimensional and correlated. 1 don’t provide theoretical results for
elastic net since it is considered as part of the lasso family; however, given it has been
proposed to improve prediction performance in the context of collinear predictors I in-
clude it the simulation and application result. Lasso tends to select only one of a group of
correlated predictors and switches between them with small changes to the regularization
parameter (see Section 5). Elastic net, on the other hand, tends to select correlated vari-
ables in groups. The elastic net estimator is defined by the below minimization function.
« is the weight on the [; penalization and 1 — « is the weight on the /5 penalization and

A is the penalization term on the size of the coefficients.

p

T p
B(enet) = arg mﬁan(yt _ w;ﬁ)Q + a)\z |5J| + (1 — Oé))\ Z(BJ)Q (34)
t=1 Jj=1

J=1

The elastic net function is ¢ (z,) = 2} Fenet)

3.3.2 Gradient Boosting

My paper is mainly concerned with determining how boosting compares theoretically
and in an applied sense to lasso and its variants, since boosting is not yet very familiar
to economists and has performed very well in prediction in other disciplines. Boosting
makes a prediction by efficiently combining the predictions of many simple models, known
in the machine learning literature as weak learners. For modeling a continous dependent
variable, there are a variety of weak learners available, including single variable linear
regressions, and non-linear learners such as k-splines and regression trees. Boosting is
very modular and can be used to model a variety of dependent variable types; for binary
variables, for example, boosting combines classifiers like single variable logistic regressions
or shallow decision trees.

The first form of boosting was AdaBoost, which has been used for binary classifica-

tion succesfully and minimizes a form of exponential loss, and is due to Freund et al.
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(1996). After the applied success of AdaBoost, a significant amount of work went into
understanding the properties of boosting in a game theoretic and online learning context
(see Schapire & Freund (2012) for a good overview), as well as generalizing the algorithm
to different loss functions and to categorical and continuous dependent variables. The
general form of gradient boosting presented below for modeling functions of continuous
variables is due to Friedman (2001). I also clarify at each step the choices that will give
Lo-Boost, which is the linear form of boosting that I focus on in this paper.

Given observations on y; and each of p observed predictors x; = (241, ..., xy,) for t =
1,...,T, let ¢(x;) be a function on R? and C(y;, ¢(x;)) be the loss function that penalizes
the deviation of ¢(z;) from y;. For Ls-Boost, choose the error function C(y;, ¢(x)) =
%(yt — ¢(x4))?, which is the quadratic loss function. The following steps give the solution

to the gradient boosting algorithm.

~

L ¢o(z) =y
2. Form=1,.... M

e Fort=1,...,T, compute the negative gradient vector

m) _ —0C(ys, @)

= 258 9

Under the quadratic loss function ugm) = 4 — O (2);

e Fit a base learner to the gradient vector to yield the update for gzgm. For

Lo-Boost, the base learner is a single variable regression. Calculate

T

> l’jm,tugm)
A t=1
Bij = ——,

EA
> L5t
i=1

11



a single variable regression coefficient, where

T

Jm = arg min (uim) — Bjwj)?
1<5<p P

and corresponds to the index of the single variable that is most correlated to

the current residuals ugm). For Ly-Boost, g, (x;) = xjt,é’jm
3. Update ém(xt) = @m,l(xt) + vgm (), where 0 < v < 1 is the step length.

Under quadratic loss function and with single variable regression as the base learner,
the algorithm is known as Lo-Boost. Forward stagewise linear regression (FSLR), which is
closely related to Lo-Boost and will be discussed when evaluating the connections between
lasso and boosting, is formed from the same procedure except that g,,(z;) = sign(5;)z;.
For FSLR, the coefficient update on z;; is made in the direction of the coefficient Bj but
always at a constant size of v. For Lo-Boost, it is made in the direction of the coefficient
but at a variable size of vﬁ}.

Under Ly-Boost, the final classifier can be expressed as the linear function ¢(2t00s?) (x) =

x,302b00st) where 3(2b00st) — (3, .. 3] and fori=1,...,p

M
Bi(lzboost) _ Z 6jmﬂ(z — jm) (36)
m=1

Ly-Boost can be intepreted as a cautious version of Forward Stepwise regression, which
is another well-known method that is a variant of Lo-Boost with stepsize v = 1. A model
estimated with Forward Stepwise regression is built sequentially by adding one variable
at a time that is most correlated with the current residual.

Regression trees can also be used as base learners, g,,(z;), in the gradient boosting
algorithm instead of single variable regressions as for Ls-Boost. A rigorous description
of regression trees is too extensive for the scope of this work; instead, a basic overview

follows!. A regression tree for boosting at step m in the boosting algorithm takes as

1See Athey & Imbens (2015) for a more extensive description of regression trees in an economic context

12



input a target variable, which are the residuals ugm), and each of p observed predictors

xy = (Tp, ..., Typ) for t = 1,...,T. Boosted regression trees create a non-linear estima-
tor of ugm) that allow for interaction terms between predictor variables and other, more
complex linearities. If the true generating process is not linear, then regression trees may
outperform single variable regressions as a base learner. A regression tree is made up a
series of nodes, with splits defined as thresholds on the predictors. The splits eventually
lead to a terminal node, which is a node with no splits following it, defined as a leaf,
which assigns a value to an observation that reaches it. To estimate using a regression
tree, an observation starts at the initial node and follows the splits until it is assigned the
value for the dependent variable at the first leaf reached. The maximum number of splits
from the top of the tree to the leaves of the tree is the depth of the tree. Figure 1 shows
an example tree of depth two. The initial parent node splits into two child nodes based
on the observation’s value for x3,. Then, the tree either assigns a value, or splits again
on x14, depending on which branch was followed from the split on x3,. Each of the leaves
give the mean of the target variable for the partition of the training sample that reaches

that leaf of the tree.

T <1 T > 1

Figure 1: Sample Regression Tree

Let leaves(B) be the set of terminal nodes of a tree B. Let t. be the set of indices

corresponding to observations that are assigned to leaf ¢ based on the splits defined for B.

13



Note that a regression tree partitions the set of training examples so that each training

example only reaches one leaf of the tree. The sum of squared errors for a tree B is

§= > D —m’

c€leaves(B) j€lc

where m, = ni > u§m) which is the prediction for leaf ¢ and n, is the number of indices in
© j€te
t.. The standard regression tree growing algorithm with maximum depth D in a recursive

formulation (adapted from Shalizi (2006)) is:

1. Start with single node containing all points.
2. For the node, calculate m,. and S.

3. If all points have the same value for the dependent variables, or if the node is at
the maximum depth of the tree D, stop. Otherwise search over all single variable
binary splits (of type x4 > a, ;4 < a) to find the variable and the split that reduces
S the most. If it is less than some threshold ¢ or if one of the resulting two nodes
contains less than predefined ¢ points then stop. Otherwise, split, creating two new

nodes.

4. For each new node, return to step 2.

3.3.3 K-fold Cross-Validation

K-fold cross validation is common in machine learning and is used in non-parametric
regression; however, it is not familiar to all econometricians so I give a brief introduction
here. Leave one-out cross validation, where the number of subsets K in the process
described below is equal to the sample size, has been shown to be equivalent to AIC
when the model is estimated by maximum likelihood (Stone, 1977). Model-based criteria
generally work better if the model is fully and correctly specified, but cross-validation

generally works better in practice due to its flexible and non-parametric form. 10-fold

14



cross-validation is used since it is the standard in the machine learning community and
has been shown to provide better results than more computationally expensive methods
such as leave-one-out cross validation (Kohavi et al. , 1995). I use 10-fold cross-validation
to select the regularization parameters for lasso and for boosting for all of the simulation
and application results. In cross-validation, the regularization parameter chosen is the one
that minimizes the estimated prediction error in the cross-validation task. The method

proceeds as follows:

e Split the dataset into K subsets, with the members of each subset chosen randomly
e For each regularization parameter in a reasonable prespecified range :

— For each of the K subsets, estimate the model on the other K — 1 subsets and
calculate the mean squared error on the subset that is held out from the model

estimation. Average the out of sample error across the K subsets.

e The regularization parameter chosen is the one that minimizes the average out of

sample error across the K folds.

3.4 Computation

Programming for this paper has been done in R. The estimation of elastic net and lasso
models and cross validation are done using the R package glmnet (Friedman et al. , 2010),
the estimation of Ly-boosting is done using the R package mboost (Hothorn et al. , 2012)
and tree boosting with gbm (Ridgeway, 2007). Computation of a single boosting, lasso,
or elastic net model is efficient under the scenarios considered in the simulation and
application, where T ranges from 200 to 700 and N ranges from 120 to 1000. However,
under the forecasting simulations, hundreds of cross-validations are performed, and many
tens of thousands of boosting, lasso, and elastic net models have to be estimated. This

process is infeasible on a laptop computer.

15



To improve computation speed I have deployed R on a c4.2xlarge Amazon EC2 in-
stance, which is a mid-tier Amazon cloud server optimized for computation with 8 cores.
I parallelized the computation of the mean forecast errors across those 8 cores using R
package doParallel (Weston, 2014). This reduced computation time for calculating Mean
Square Forecast Error vs. the baseline model for cross-validated high dimensional models
on one macroeconomic series at one time horizon to a few hours from many days.

The code for the simulation and application results is available upon request.

4 Theory

In this section I describe the basic properties of boosting and penalized regression for
variable selection and prediction, as well as the links between the different methods. For
the following section, the notation and results are presented for cross-section data. It is
left to future work to confirm that all of the results presented can be adapted to a high-
dimensional time series setting; existing work like Basu et al. (2015) and Kock & Callot
(2015) suggest that related results can be derived for consistency in high-dimensional
time series settings. Furthermore, for clarity, I focus on the basic forms of lasso and Lo-
Boost, rather than also discussing variants of lasso such as elastic net or nonlinear forms

of boosting.

4.1 Consistency

Both lasso and boosting are consistent for prediction in high-dimensional models, under
a potentially reasonable assumption of sparsity in the true coefficients. However, consis-
tency for model selection requires assumptions that are much more strict for both boosting
and lasso, and are not likely to hold in most real-world situations.

A brief discussion of consistency is required before proceeding to the results, adapted

from Zhao & Yu (2006). Let f(X;8) = XB+¢€ be a linear regression model parameterized
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by 5. X is n X p. An estimation procedure giving an estimator B is consistent for
prediction if

~

F(X;8)— f(X;8) =, 0, asn — oo

An estimator B with true parameter § is estimation consistent if

~

B—=p8—=,0, asn — o0

A set of estimates is consistent for model selection if

P{i:B;#£0}={i:8;#£0}) =1, asn — oo

None of these definitions imply the other. A model estimation method can be predic-
tion consistent, but not consistent in terms of model selection or parameter estimation, for
example by substituting predictors outside the true model for predictors in the true model
that are correlated with those outside the true model. A model estimation method that
is consistent in terms of model selection may not be prediction consistent if the correct
coefficients are selected but all with a constant bias, for example.

Our discussion below focuses on prediction consistency and a slightly stronger form
of model selection consistency, sign consistency, but does not describe the properties of
lasso and boosting in terms of parameter estimation consistency, since our results focus on
the tradeoff between prediction and variable selection in high-dimensional macroeconomic
forecasting and are not concerned with recovering the exact values of all parameters.

A note on the notation for sign consistency in the following sections:

17



if and only if

sign(B) — sign(B) =, 0, as n — oo

where sign for a vector in R? is a function returning a p-length vector containing the
sign for each element of the input vector. This will be used to define a slightly stronger
former of model selection consistency; rather than the estimated parameter B just setting
the correct variables to zero, for the predictors in the true model, an estimator that is

sign consistent also estimates the correct sign asymptotically.

4.1.1 Lasso Prediction Consistency

Bickel et al. (2009) derives a bound for lasso’s prediction risk in high dimensional settings
for non-random X.

Consider the linear model

Let X be the n x p matrix of predetermined covariates, where p > n. Defining
some additional notation is required. Let M (/) be the sparsity (the number of non-zero
coefficients) in a vector of coefficients 3, and s be an upper bound on M(fS). Let Jy be

the indices of the nonzero coefficients of the true parameter § in the model.

Definition 4.1. The Restricted Eigenvalue Condition holds for 1 < s < p and a

positive number ¢y for § = B — 3 when:

X0
K(s,co) = min X0l

— >0 4.2
JoClyeoop, | Jo| <5 57£0,118 s¢ll1<colléug |l /7|05, ]2 (42

This condition roughly means that the columns of X cannot be too correlated (Tib-
shirani, 2015).

Theorem 1 (Bickel et al. (2009) ). Let €; be i.i.d. N(0,0%) random variables. Let the
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diagonal elements of X'X/n be equal to 1, and let M(B) < s, where 1 < s < p, n > 1,
p > 2. Let the restricted eigenvalue condition be satisfied for co = 3. Consider the lasso

estimator B (Lasso) yith,

\ = Agy/los®)

n

and A > 2v/2. Then, with probability at least 1 — p'=4*/%,

16A2
K2(s,3)

This result gives the finite sample result for the prediction risk. Dividing the result by

1X(8 =Bl < oslogp (4.3)

n, it is clear that, as long as s, the upper bound on the number of non-zero coefficients
in 3, grows sufficiently slowly with n, then lasso is consistent for prediction. Tibshirani
(2015) unites this specific result and the related work by Greenshtein & Ritov (2004) and

others in a basic asymptotic sense. For

= Ag 1080

n

and under the assumption that the norm of the column vectors of X, ||X;||3 = n, for

j =1...p (which is trivial and can be achieved by normalizing X):

n

1X(3 - B)|[2/n = Op (a logPIIBHl) (4.4)

As long as the 1 norm of the true coefficients ||3||; grows slower than /n/log(p) then
lasso is consistent for prediction.
This result and the links to the various oracle inequalities derived by statisticians under

different but related assumptions are presented in more detail in Biithlmann & van de Geer

(2011).
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4.1.2 Lasso Model Selection Consistency

Zhao & Yu (2006) show that lasso selects the correct model under restrictions on the sam-
ple covariance matrix and regression coefficients, known as the Irrepresentable Condition
(IC). Meinshausen & Biithlmann (2006) have a similar result for random regressors under
a related condition, known as the neighborhood stability condition. I describe Zhao &
Yu (2006)’s results here. The IC requires that predictors that are not in the true model
can’t be represented by predictors that are in the true model.

Consider the linear model

where ¢; are i.i.d. with mean 0 and variance o2.

X, is a p,-dimensional vector of
explanatory variables. [ is a p, dimensional vector of coefficients. p, can grow as the

sample size grows. Let X be the n x p, matrix of explanatory variables.

Definition 4.2. Lasso is Strongly Sign Consistent if there is A\, = f(n) such that

lim P(B(\,) =, B) = 1

n—o0

To define the Strong Irrepresentable Condition, which is a necessary condition for
strong sign consistency for lasso, some additional notation is required. Let 8 = (51, ..., By, Bant1s - - -5 Bp,
where §; #0 for j =1,...,¢, and ; =0 for j = ¢, + 1,...,p,. Let X(1) and X(2) be
the first g, and the last p, — g, columns of X. Let C1; = X (1)'X(1), Cao = £X(2)'X(2),
Cip = %X(l)’X(Z), and Oy = X(2)'X(1).

T on

O — C111 012

C(21 022

Definition 4.3. For the Strong Irrepresentable Condition to hold, there must exist
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a positive vector n such that

|C’21(C’11)_15ign(ﬁ(1))| <1l-19

where 1 is a p,—q,, vector of 1’s. The Strong Irrepresentable Condition is not something
that can be verified in practice given it relies on knowing which covariates are in the true
model; it can be interpreted, however, as a constraint on the regression coefficients of
the irrelevant covariates when regressed on the relevant covariates. Zhao & Yu (2006)
describe some constraints on the correlation structure of the covariates in a series of five
corollaries that are sufficient for the Strong Irrepresentable Condition to hold. I present
one below and leave the complete results for the reader to consider in the original paper.

Corollary 1 (Zhao & Yu (2006)). Suppose B has g, nonzero entries. C has 1s on the

diagonal and the covariates have bounded correlation |'r’,-j| < Qq%l for 0 < c¢ < 1, then the

Strong Irrepresentable Condition holds.

So, for IC to hold, the correlation between covariates must be bounded, and this bound
decreases as ¢, the density of the true model, increases. For large values of ¢, the bound
may be too small to be feasible in practice; so both sparsity and lack of collinearity are
necessary for IC to hold, which is in turn necessary for lasso to be sign consistent for
model selection. This result is relevant to the block-correlated correlation matrices that
I will explore later in the applied section. In the simulations described, the theoretical
tradeoff between ¢ and the maximum correlation r will be made explicit.

There are 4 further assumptions necessary for the result. Assume there exists 0 <

c1 < co < 1and My, My, M3, My > 0 so that:

1. L(X;)(X;) < M,Vi, which is trival since normalizing covariates can always achieve

this.

2. o/Cra > My, for ||al3 = 1, which is a condition on the eigenvalues for relevant

covariates that ensures the inverse of C'1; is well behaved.
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3. gn = O(n°'), which is a sparseness condition.

1-co . . ..
4. n7z ming_y__,, |Bi] > M3, a beta-min condition.

Theorem 2 (Zhao & Yu (2006)). Consider the model (4.7) satisfying assumptions (1)-(4).
Assume €; have a finite 2k 'th moment E(e;)** < oo. The Strong Irrepresentable Condition
implies that lasso has strong sign consistency for p, = o(n'2=V*). More specifically, for

(cg—c1)

any X\ that satisfies \/Aﬁ =o(n "z ) and pi(\/Aﬁ

)% — o0, then:

P(BN) =,8)>1-0 (pnnk) — 1, asn — o0

Under a beta-min condition, a restriction on correlation between the covariates (the
strong IC), and some additional technical assumptions, lasso is strongly sign consistent.
However, these are highly restrictive assumptions in practice for economic data. As the
applied section will show, for large macroeconomic datasets, where data generating pro-
cesses for individual series may be dense rather than sparse (see Giannone et al. (2017),

and where covariates are block-correlated, lasso is not likely to be strongly sign consistent.

4.1.3 Boosting Prediction Consistency

Biithlmann (2006) proves that boosting is consistent for prediction in high-dimensional
settings when X is predetermined. Let X; be a p,-dimensional vector for i =1,...,n

Consider the linear model
yi = XiBn + €, i=1,...,n (4.6)

where X is n X p, Xi,..., X, are i.id. with E|X;|? = 1 for all j = 1,...,p, and
E(€X) =0 and E(e) = 0. The number of predictors p, is allowed to grow with sample

size n. The following assumptions are made:

1. The dimension of the predictor set satisfies p, = O(exp(Cn'~?)), for n — oo, for
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some 0 < ¢ < 1,0 < €' < oo. This allows the predictor dimension to be large and

grow with the sample size.

Pn

. Supnen Y |Bjn| < co. This is a sparseness condition. There can be many predictors
j=1

that are relevant, but if so most must contribute with only small magnitudes.

. Sup1<j<pnnen||Xjllo < 00, where ||X || = supuea|X (w)| and 2 denotes the under-

lying probability space of the covariates.
. Ele|* < oo for some s > 4/t with ¢ from (1).

Theorem 3 (Bithlmann (2006)). Consider the model (4.5) satisfying assumptions
(1)-(4). Then, the boosting estimate ¢'™ (-) with the componentwise Ly-boost proce-
dure from Section 3.5.2 satisfies; for some sequence (my)nen with m, — 0o as n —

oo sufficiently slowly,

Ex|6(X) = fu(X)[* = 0p(1), asn — oo (4.7)

where X denotes a new predictor variable, independent of and with the same distri-

bution as the X-component of the data (X;,y;),i=1,...,n.

4.1.4 Boosting Model Selection Consistency

It is still an open question whether or not Ls-Boost is consistent for model selection

(Bithlmann & Hothorn, 2007). Ing & Lai (2011) study the properties of a variation of Lo-

Boost, which they call the orthogonal greedy algorithm (OGA). This algorithm, similar

to Lo-Boost, is a stepwise process that chooses the variable that is most correlated to the

residual at each stage. Unlike Ly-Boost, to update the prediction function, rather than

using a simple single variable regression, OGA sequentially orthogonalizes the selected

variables. They prove that, under a beta-min condition, with probability approaching 1,

the variables chosen by OGA contain all the relevant variables.
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It is left to future work to determine if a similar proof is possible for Lo-Boost. The
results of Ing & Lai (2011) suggest that some sort of beta-min condition would be neces-
sary. However, it is unclear whether the strict limits on the correlation of the variables
inside and outside the true generating process required for lasso to be consistent are also
necessary for unmodified Lo-Boosting. The next section of theory describes the close re-
lation that boosting has with L; penalization methods, which suggests that boosting also

has some difficulties with variable selection in high-dimensional, collinear settings.

4.1.5 Discussion

I present results for the prediction risk for lasso in finite sample and asymptotically,
while for boosting I just describe the asymptotic prediction risk. The expected prediction
error of lasso in finite samples worsens under correlation of the covariates and decreasing
sparsity. However, asymptotically, the prediction consistency of lasso depends only on the
l; norm of the coefficients growing sufficiently slowly; this is the same as the main condition
for Ls-Boost to be consistent for prediction. So, under large samples, I expect that Lo-
Boost and lasso-family methods would perform similarly well, even in block-correlated
and potentially dense macroeconomic data. Under finite samples, it is unclear whether
or not boosting will have the same limitations as lasso. This motivates the next section
that examines the theoretical connections between boosting and lasso to determine that
similar limitations are likely for boosting.

For model selection consistency, the first issue is that in general a single regularization
parameter cannot both be optimal for prediction and for model selection. The second,
which was described more fully in section 4.1.3, is that lasso requires strong conditions
on the correlation of covariates which are not likely to apply in block-correlated macroe-
conomic datasets. In the simulation and application sections, I will study more closely
what kinds of mistakes lasso and boosting make in a block-correlated scenario and pro-

vide some suggestions for how some interpretation of the results is still possible. Another
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issue is that for the theorems presented, the proofs are based on non-random covariates
X, whereas for economic data the covariates are likely to be random. However, the the-
oretical results for non-random X still provide insight into why there are limitations on

boosting and lasso in certain real world scenarios.

4.2 Relationship between Lasso and Ls;-Boost

In interpreting the results in the applied sections of the paper, it is informative to under-
stand the similarities between lasso and Lo-Boost, and where these two methods diverge.
In the previous section, I explored the consistency for prediction and model selection of
lasso and boosting. Boosting does not have results available for finite sample prediction
error or model selection consistency. Describing the theoretical links between the two
methods can help clarify why performance differences in the two methods might exist
in practice and also what can be expected for model selection consistency of boosting,
where specific results are not available. I begin by describing LARS, which unified for-
ward stagewise regression and lasso in the same framework, and then proceed to some
more recent work unifying the method under the framework of subgradient optimization
(Freund et al. , 2017) and as a solution to differential equations (Hastie et al. , 2007). For
this section, the following algorithm is required, which was briefly introduced in Section
3.

Forward Stagewise Regression takes as input observations g; and each of p ob-
served predictors x; = (41,...,2y)" for t = 1,...,T. Let X be the T" x p matrix of

covariates.

~

L ¢o(w) =7
2. Form=1,.... M

e Fort=1,...,T, u =y — p_1(2;); u is the T dimensional vector of residuals

for the current step.
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e Choose the single variable among the covariates with the highest correlation
with the current residuals. ¢ = X'u is a vector with entries from ¢; from
Jj = 1,...,p that are proportional to the current correlation between z; and
the residuals.

Jm = arg max |¢;| (4.8)

3. Update ¢ (2;) = dm_1 () + dsign(é;,, )xy;, where 4 is the stepsize.

This algorithm is the same as Lo-Boost, except the updates take a small step in the
direction of the most correlated single variable regression using the sign of the coefficient
of the single variable regression, rather than taking the step using the magnitude of the

coefficient. In the scenario where § = v|$;, | then the two methods are equivalent.

4.2.1 LARS

Efron et al. (2004) showed that forward stagewise linear regression and lasso are both
specific cases of a more general algorithm called LARS. Furthermore, LARS provides
a computationally efficient way of computing the solution path for lasso as A\ varies. I
describe in a rough sense the LARS algorithm below?. LARS takes as input observations
y; and each of p observed predictors x; = (x4, ...,x4,)" for t = 1,...,T. Let 3 be the

LARS estimated coefficients. Start with all coefficients 3 equal to zero.
1. Letu=y—y
2. Find the predictor x; most correlated with @

3. Increase Bj and compute residuals @ = y — BX until another predictor x; has as

much correlation with 4 as x; does

4. Increase B}-, 5} in a direction that is in equiangular between the two predictors until

a third variable enters the most correlated set.

2For the details on the exact algebra and implementation I refer the reader to the original paper (Efron
et al. , 2004)
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5. Increase all three coefficients equiangularly between the three variables until a fourth
variable enters the active set, and so on, until all the predictors are in the active set

and the correlation of the residuals with the predictors are zero.

Theorem 4 (Efron et al. (2004)). Under the Lasso Modification, and assuming the “one

at a time” condition®, the LARS algorithm yields all Lasso solutions.

Theorem 5 (Efron et al. (2004)). Under the Stagewise Modification, the LARS algorithm

yields all Stagewise solutions.

The lasso modification is a minor modification of the LARS procedure, while the
stagewise modification is a moderate modification of the procedure. I first summarize the
modifications at a high-level, adapted from (Hastie, 2003). A more explicit characteriza-
tion is presented later in the section in Definition 4.5, while characterizing a modification
of lasso that yields forward stagewise directly. In LARS, the active set (the indices of the
coefficients that are currently being increased in a direction equilangular between them)
can only monotonically increase. For the lasso modification, modify LARS so that if a
coefficient ever crosses zero, drop it from the active set, recompute the equilangular dis-
tance between the current active set, and continue. For Stagewise regression, the authors
consider an idealized procedure where the stepsize ¢ tends to zero. The Stagewise Modifi-
cation proceeds as follows. During the LARS procedure, if the direction for any predictor
J doesn’t agree in sign with corr(u,z;) then project the direction into the positive cone
and use the projected direction instead. Under a restrictive condition on the covariate
matrix, called the “positive cone condition”, then Efron et al. (2004) show that lasso,

forward stagewise, and LARS coefficient paths coincide.

4.2.2 Monotone Lasso

However, under most scenarios the paths of lasso and forward stagewise coefficients are

very different, and the forward stagewise paths are much smoother than the lasso paths.

3This means there are no ties so that only one index added to the active set at each step
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Hastie et al. (2007) derive a related result that links forward stagewise regression directly
to lasso and decribes explicitly the difference between the two in terms of the optimization
problem solved to derive the coefficient path. It characterizes the version of forward
stagewise regression as a monotone version of lasso. First, it is necessary to introduce
an expanded form of the n X p set of covariates X. X includes each variable z; and its
negative —z;.

The monotone lasso is defined on the expanded covariate space X as the regular
lasso problem, plus an additional constraint that the coefficient paths must be monotone
non-decreasing. In the expanded coefficient space for both algorithms, the monotone lasso
provides the same solution path for coefficients as the limiting version of forward stagewise
regression. This leads to a succinct characterization of forward stagewise regression. Every
point on the coefficient path of the regular version of lasso can be defined as the solution
to a convex optimization problem. The monotone lasso, however, cannot be characterized
as a convex optimization problem due to the monotonicity restriction, but the moves at
each point in the coefficient path can still be characterized as locally optimal. A few
definitions are presented before the main result. Let ¢ be a continuous-valued variable
that indexes the steps taken in the LARS algorithm defined in the previous section, where

each step size is considered to be very small, tending to zero.

Definition 4.4. Assume f(¢) is a differentiable curve in ¢ > 0, with (0) = 0. The Ly

arc-length of 5(t) in [0, ¢] is:

05(s)

4.
5s ds (4.9)

1

t
TotalV ariation(,t) = /
0

This is a measure of smoothness of the curve of the coefficient path 5(t).

Definition 4.5. Let 3 € R? be an estimated coefficient for a linear model on the ex-
panded variable set X and let & =y — X . Let A be the active set of variables achieving

maximal correlation with «.
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1. The lasso move direction p;(3) : R* — R? is:

0 ifX'u=0

pi(B) =
a2 6/>6;, otherwise,
J

with 6; = 0 except for j € A, where 04 is the least squares coefficient of @ on X4

2. The monotone lasso move direction p,,(3) : R? — R? is:

0 if X' =0

pim(B) =
im () 6/> 6, otherwise,
J

with 6; = 0 except for j € A, where 04 is the non-negative least squares coefficient
of 4 on Xy4.

Though the monotone lasso can’t be formulated as a solution to a global optimization

problem, it can be formulated in terms of local optimality.

Theorem 6 (Hastie et al. (2007)). The lasso and monotone lasso (forward stagewise)

move directions defined in Definition 4.5 are optimal in the sense that:

1. The lasso move decreases the residual sum of squares at the optimal quadratic rate

with respect to the Ly coefficient norm;

2. The monotone-lasso move decreases the residual sum of squares at the optimal

quadratic rate with respect to the coefficient L1 arc-length.

Furthermore, the coefficient paths for both methods can be defined by differential equations,

the first for lasso and the second for monotone lasso/forward stagewise regression.:
5
1. %2 = p(B(t))
2. 5 = pm(B(t))
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with initial conditions B(0) = 0 for both

These results lead to an expectation that the boosting coefficient paths will be smoother
than lasso coefficient paths. Lasso is known for having the tendency to switch back and
forth between correlated variables depending on the regularization parameter and the
data; boosting would be much less likely to do this given each step of boosting takes into

account the smoothness of the coefficient path over previous iterations of the algorithm.

4.2.3 Subgradient Optimization

LARS is not the only framework that has united Ls-Boosting, forward stagewise re-
gression, and lasso. Recent results in Freund et al. (2017) show that L,-Boost can be
formulated as a solution to a convex optimization problem that have the residuals as
the optimization variable rather than the parameters. They show that L,-Boost, forward
stagewise regression and lasso can all be viewed as special instances of subgradient descent
method of convex optimization applied to the following parameteric class of optimization

problems:

1
P, : min || X'r|| + %Hu—yHg, where u = y — X 3 for some [

and where o € (0,00] is a regularization parameter. The first term is the maximum
correlation between the predictors and the residuals and the second is a regularization
term that penalizes residuals that are far from the observations. This problem can be
shown to be a dual of the lasso problem. They use this insight to form computational
guarantees on the level of shrinkage and training error as boosting in the p < N case
converges to the least squares solution as the number of boosting iterations increase.
For future work it would be interesting to study the impact of this insight on statistical
guarantees of interest to econometricians, such as finite sample forms of consistency for

boosting.
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4.2.4 Discussion

The work unifying lasso and boosting under a common framework is important to under-
stand how boosting and lasso might be different in practice. First, it is clear that lasso
and forward stagewise regression are extremely similar. Under certain conditions, the
coefficient path for both will be the same; in most scenarios, the path will be different,
but the differences can be succinctly characterized as slight modifications of the unifying
algorithm LARS. This leads us to expect that boosting and lasso, despite appearing very
different, should have similar limitations in the prediction and variable selection tasks for
macroeconomic data. Second, boosting enforces smoothness on coefficient paths as the
regularization parameter varies; for lasso, correlated variables may switch in and out of
the active set more often. This divergence will affect the algorithm’s relative performance
in variable selection under block-correlated simulations and macroeconomic data. Third,
while lasso can be formulated as a convex optimization problem for each point in the
coefficient path, the forward stagewise path’s monotonicity restriction precludes such a
characterization; however, formulating forward stagewise regression as locally optimal.
This suggests that some results that are available for lasso may be much more difficult
to derive for boosting. Many recent results on lasso relating to confidence intervals and
standard errors (van de Geer et al. , 2014) are derived starting from the KKT conditions

of the lasso optimization problem for the parameters.

5 Simulations

In this section, I investigate the model selection and prediction forecasting of lasso, elastic
net, and boosting, for a high-dimensional model, with p >> T'. I chose T" = 200 since in
many macroeconomic applications, there is only a few hundred data observations available,
at most.

The data generating process, for t =1...7 and T = 200 is:
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Y = 1 + e, e~ N(0,1) (5.1)

Let X be the T' X p matrix of independent variables. There are p = 900 covariates in
30 blocks of 30 variables. x; is i.i.d. and z; ~ N(0,X) where ¥ is block-diagonal. Within
each block variables are correlated at p and have variance 1. I simulate § by assuming
that for each n = 1,...,900, §,, is 0 with probability 1 — ¢ and 1 with probability ¢g. If
i is non-zero then f; ~ N(0.5,1). Increasing ¢ decreases sparsity of the data generating
processes; increasing p increases correlation within blocks?. I will examine the results of
varying both p and ¢ on coefficient path, model selection and prediction error for both

lasso and Ls-boost.

5.1 Coefficient Path under Regularization

The first feature of regularized regression that I examine is the coefficient path as the
regularization parameter is varied. The results for simulations for p = 0.8,¢ = 0.05
for elastic net, lasso, and boosting are in Figure 2. Each line in the figure represents
the magnitude of one of the 900 individual coefficients as the regularization parameter
for the algorithm is relaxed. So, for boosting, the z-axis is the stopping parameter M
as M increases, and for elastic net and lasso, the z-axis is A as it is relaxed from high
values to low values. With substantial collinearity between blocks of variables, even under
significant sparsity the lasso coefficients are highly unstable. Many coefficients that are
non-zero for high values of A\ drop and then are zero for moderate values of A, then
non-zero and rising again for low values of A\. Using elastic net with a = 0.7 does not
alleviate this problem; elastic-net, although it is designed to deal with correlated blocks
of variables, still shows a tendency to switch from one variable to another entirely as A

is varied. Boosting is much more stable. In L,-Boost, once a variable is selected, its

4In real data, it is likely that p will not be constant across blocks; however, it is held constant in the
simulations for clarity, given the results aren’t materially different if p is varied across blocks.
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Figure 2: Coeflicient Paths Under Block Correlation

coefficient only monotonically increases. The final subfigure shows how lasso stability
begins to improve even in the collinear setting with » = 0.8 within each 30-variable block
when sparsity drops to ¢ = 0.01.

I have demonstrated that for small fluctuations in the regularization parameter, vari-

ables selected by lasso and elastic net can fluctuate widely, while for boosting, coefficients
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monotonically increase as the regularization parameter is relaxed. This is expected given
the theoretical results on the local optimization problem that boosting solves, which takes
into account the smoothness of the coefficient path, compared to lasso, which is concerned
only with the model’s error and the L; norm of the estimated coefficients. In the rest of
this section, I investigate whether the relative stability of the boosting coefficient path as

the regularization parameter varies helps or hinders model selection and prediction.

5.2 Model Selection

According to the theoretical results on model selection consistency presented earlier, lasso
has issues when sparsity doesn’t hold and variables are correlated; boosting, given the
close connections to lasso through LARS, is likely to have the same issues, although it is
not clear if the conditions on boosting are more or less strict than on lasso. To test the
theoretical predictions from Section 4, I present the model selection results for elastic net,
lasso, and boosting for four levels levels of sparsity and collinearity in Table 1 for p = 900.
For each combination of ¢ and p, the first column gives the number of non-zero coefficients,
the second shows the % of non-zero coefficients in the true model that are non-zero in the
estimated model, and the third shows the % of zero coefficients in the true model that are
non-zero in the estimated model. The first scenario is ¢ = 0.02, p = 0.3, p = 900, which
involves only moderate correlation and sparsity of approximately 7/10. The second and
fourth involve higher sparsity, approximately 7'/20 with the second having high correlation
of 0.8 and the fourth having very high correlation of 0.95 within blocks. The third involves
higher density of approximately 7'/4 and high correlation of 0.8.

With p >> T, for all the block-correlated scenarios examined, elastic net, lasso, and
boosting all select far more variables than the true data-generating process, with the effect
exacerbated as the data generating process becomes more dense (as ¢ increases); boosting
and elastic net both tend to select a similar number of non-zero variables that is higher

than lasso. For p = 900, in all scenarios except the most dense scenario, the three high-
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Table 1: Simulation Model Selection Results

‘ Non-Zero % Correct % Incorrect ‘ Non-Zero % Correct % Incorrect

1) q=0.02,p = 0.3, p=900 2) q=0.01,p = 0.8,p=900
True 18 N/A N/A 9 N/A N/A
Lasso 82 86% 7.5% 44 79% 4.2%
ENet 90 86% 8.4% o1 79% 5.0%
Boost 90 86% 8.4% 49 79% 4.7%

3) q=0.05,p = 0.8, p=900 1) q=0.0Lp = 0.95, p=900
True 45 N/A N/A 9 N/A N/A
Lasso 118 67% 10.3% 37 64% 3.5%
ENet 123 67% 10.9% 45 65% 4.4%
Boost 123 61% 11.3% 46 63% 4.5%

dimensional methods select the same percentage of correct variables, within 2 percentage
points. For the dense scenario, boosting selects less correct variables and more incorrect
variables than the other competing high-dimensional methods. The percentage of correct
variables selected by all methods drops as density increases or as correlation increases.
Between scenario 2 and 4, the density remains the same but correlation increases, and the
percentage of non-zero variables correctly selected drops by 15 percentage points for all
methods, from 80% to 65%. Between scenario 2 and 3, the correlation remains the same
but the density of the data-generating process increases. The percentage of nonzero vari-
ables correctly selected drops by at least 12 percentage points for all three methods. This
makes sense; the task of distinguishing between true non-zero coefficients and those corre-
lated with true non-zero coefficients becomes increasingly difficult as correlation increases
and as density increases, which corresponds to the theoretical guarantees on model selec-
tion consistency in lasso. For the percentage of zero coefficients incorrectly set to zero,
some common patterns occur; in all scenarios but one, boosting selects more variables
incorrectly than lasso and elastic net. This is likely due to the complications introduced
by the L, arc length local optimization of boosting ; as M increases, once a variable is
set to non-zero, boosting can’t later drop that variable and set it to zero, whereas both

lasso and elastic net, which ignore the smoothness of the coefficient path as A\ varies, can
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make switches in the active set. So the instability of elastic net and lasso shown in the
previous section may actually help improve model selection and prediction in correlated

data as the regularization parameter is moved to an optimal value.

5.3 Selection within Blocks

Table 2: Estimated Non-Zero Coefficients for Block #2 when q=0.05,p=0.8

True Model Lasso Elastic Net Lin. Boost
B33 2.49 2.05 1.95 1.97
Bsa - 0.21 0.24 0.38
Bus 0.44 _ _
Bas - 0.06 0.09 -
Bur - 0.46 0.47 0.36
350 - - - -0.06
Bss - 0.03 0.04 -
Bso - 0.07 0.06 0.06
%Oj B, 2.93 2.88 2.85 2.71
p=31

Given the macroeconomic data that I will examine in the next section is also dense
and correlated in economically-interpretable blocks, it is interesting to examine what sort
of mistakes boosting and lasso are making. Table 2 shows the results for the second block
of thirty variables in a single run of the simulation with ¢ = 0.05, p = 0.8, which had the
worst results in terms of false positive rate. It describes how when making a mistake in
model selection in the dense and correlated scenario, the high-dimensional models are not
setting very many variables in blocks with no true non-zero coefficients to non-zero, but
instead are setting incorrectly activating variables within the same block as true non-zero
coeflicients; however, the sum of the estimated coefficients for all coefficients is close to
the sum of the true model for the block. For example, in this simulation, L,-Boost sets
variable 33 and 34 non-zero, such that the sum of the coefficients on both is approximately
equal to the the true non-zero coefficient on variable 33. It set variable 47 non-zero instead

of variable 43, and incorrectly sets 50 and 59 to non-zero (though their coefficients offset
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each other). The sum of the estimated coefficients for boosting in this block is 2.71, which
is within 10% of the true sum of 2.93. To examine this finding in a more general scenario,
Table 3, shows the average absolute value of the sum of the coefficients within a block for

the true model for each of the four scenarios in the first column.

30 bx30
> > (B)
Sum _ b=1 |i=(bx30—29)
block 30

The latter three columns describe M S Ejy,cr, which is the average squared difference
between the sum of the estimated and true coefficients for each block for a single iteration

of a simulation for each of the four scenarios:

30 bx 30 R )
> 2 (Bi—8)
b=1i=(bx30—29)

MSEblock = 30

Table 3: MSE of sum of coefficients at block level

Avg block sum Lasso MSE Elastic Net MSE  Lin. Boost MSE
q=0.02, p =0.3 0.53 0.015 0.013 0.012
q=0.01, p =0.8 0.32 0.005 0.005 0.005
q=0.05, p = 0.8 0.97 0.022 0.023 0.025
q =0.01, p=0.95 0.43 0.006 0.007 0.009

In all scenarios, the squared difference between the estimated sum of the parameters
within each block is very small compared to the average absolute value of the sum of
the true coefficients within a block. This is true in dense and correlated scenarios where
the high-dimensional methods have a low rate of selecting the true variables correctly
and a high rate of setting zero variables incorrectly. The mistakes that the methods are
making in model selection appear to generally be within blocks, rather than across blocks.
This has not yet been explored theoretically, and motivates investigating whether high-
dimensional methods are consistent with respect to model selection at the block level,

which I leave to future work, but investigate further empirically in Section 6.

37



The simulations have shown, as expected from the theoretical results on lasso and
the connections between lasso and boosting, that model selection performance worsens
as the block-correlated data generating process becomes more dense or correlated. How-
ever, I show that at a block-level, variable selection and parameter estimation improves,
motivating grouping and interpreting variables in economically meaningful blocks when

analyzing high-dimensional macroeconomic data with a block-correlated structure.

5.4 Prediction

Note that for the previous section on model selection, I selected the stopping parameters
of lasso and boosting based on cross-validation, meaning the model selected was optimized
for prediction error, not for model selection. Given that the same selected model can’t be
optimal for both prediction error and model selection, that the sample size was reasonably
small so asymptotic results may not hold, and that the sparsity assumption that lasso and
boosting rely on for consistency may not hold in some of the scenarios, it is no surprise
that there were some issues in the previous simulations with the true variables selected.
It is still valuable to examine the issues that arose given many economic practicioners
select parameters based on cross-validation and would still like to know the limits of
interpretation for high-dimensional models. Given the model estimation was done to
be optimal for forecasting, it is interesting to also examine how the previous results
correspond to out of sample forecasting performance of the three methods for the same
simulated data generating processes.

I hold back the last 10% of the simulated data as a test set and get the average out of
sample MSE over 1000 runs of the 200 sample data generating process described at the
beginning of this section. The in sample MSE reported in the table corrsponds to the

following equation, calculated on each of the three models for S = 1000:
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MSE = 2
S 180 x S (5:2)

The out of sample MSE reported in the table corresponds to the following equation,

which is calculated for each of the three models for S = 1000:

S 200
A(Model
~ _(Model) Z_:l t_z:wo(xtﬁg = yt)Q

where for both equations Bé‘/[Odert is the result of running boosting, lasso, or elastic net
on the training data from ¢ = 1,...,180 for Monte-Carlo simulation s with stopping
parameter selected by cross-validation on those first 180 observations.

The results are described in Table 4. Lasso has the lowest out of sample MSE in
every scenario, although for three out of four of the scenarios the performance of all three
high-dimensional methods is quite close, which makes sense given their close theoretical
links. The out of sample MSE for elastic net and boosting are generally comparable,
except for the third scenario where the data generating process is dense and correlated.
The in-sample MSE is generally comparable across the three methods, except in the third
scenario again, where boosting struggles both in and out of sample and performs far
worse than the other two competing methods. Unlike for model selection, only density
has a negative effect on prediction performance. The difference between scenario 2) and
4), where sparsity remains the same and correlation increases from high to very high, is
limited for all three methods, and the prediction performance actually improves in the
very highly correlated case for every method. This is likely because the model selection
mistakes within a block in the very highly correlated case have less of an effect on out
of sample error than in the p = 0.8 case since variables are so similar. In Section 4, I
showed that guarantees on model selection consistency required both restrictions on the

correlation matrix of the predictors and sparsity. However, asymptotic guarantees for
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prediction consistency only required a bound on the sum of the true coefficients. This is
evident in that increasing density from 2) to 3) results in a deterioration of out of sample

performance for all three methods, especially boosting.

Table 4: Simulation Prediction Results

| MSE (Test) MSE (Training) | MSE (Test) MSE (Training)

1) q=0.02, p = 0.3, p=900 2) q=0.01, p = 0.8, p=900
Lasso 1.92 0.58 1.38 0.76
ENet 2.05 0.55 1.43 0.73
Boost 1.98 0.53 1.44 0.74

3) q=0.05, p = 0.8, p=900 4) q=0.01, p = 0.95, p=900
Lasso 4.29 0.54 1.29 0.81
ENet 4.48 0.54 1.32 0.79
Boost 7.28 1.25 1.38 0.80

How does the especially poor result for boosting in the dense and correlated case
relate to the theory for model selection in Section 4 for lasso and boosting, which provided
asymptotic guarantees on both that guaranteed prediction consistency? The finite sample
results for lasso show that the order of the difference between the predicted and true
value of y decreases with sample size. The results presented in Section 4 for boosting for
prediction are asymptotic, but the same idea holds in finite samples. For the relatively
small sample size of T" = 200, the performance of the high-dimensional methods may not
approach the asymptotic performance when p >> T. Furthermore, for different methods

the rate of convergence to the asymptotic result may be different.

6 Application: U.S. Macroeconomic Analysis

The source data is comprised of 123 monthly stationary-transformed U.S. macroeconomic
series from Jan. 1960, to July 2017 from the Fred-MD database described in McCracken &
Ng (2016) and included in Appendix A. I transform each series according to the stationary
transformation identified in the Appendix. I also add up to 3 lags of each monthly series,

giving a total of 492 potential explanatory variables and an intercept.
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Table 5: Groups in Fred-MD Dataset

Name Number of Series
Group 1 Output and income 16
Group 2 Labor market 31
Group 3 Housing 10
Group 4 Consumption, orders and inventories 7
Group 5 Money and credit 14
Group 6 Interest and exchange rates 21
Group 7 Prices 20
Group 8 Stock market 4

The dataset is divided into eight groups of similar variables. These groups are output
and income, labor market, housing, consumption, orders and inventories, money and
credit, interest and exchange rates, prices, and the stock market. The groups and the
number of variables in each are described in Table 5. The correlation map of the series is
in Figure 3. It is clear that the data displays block-correlated characteristics, with series
within each group correlated with each other, sometimes strongly, and less correlated with
series outside the group. The first small block in the bottom left is made up of various
series of industrial production. The second strong block is made up various employment
series. The third is formed from housing permit series. These three blocks combine to
form a less strong, but still defined correlated block of real variables from the first three
categories of Fred-MD. In the upper half of the correlation matrix, there are two small and
strongly correlated blocks within the interest rate category, one for interest rate levels and
one for spreads. There is a large block made up of price level series and a very small one
for the stock category. It is clear that the correlation matrix displays the block-diagonal
characteristics of the simulation that I explored in the previous section.

To reconcile the latest appendix of McCracken & Ng (2016) with the latest dataset
posted on the website and to create a balanced panel, it is necessary to drop thirteen series.
The seven ISM series listed in the appendix are no longer included in Fred-MD releases
since June 2016. Furthermore, ACOGNO, ANDENOx, TWEXMMTH, UMCSENTx and

VXOCLSx are all dropped due to missing data in order to create a balanced panel from
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Figure 3: Correlation Heatmap for Fred-MD Data

January 1960 to July 2017.

The four series that I focus on in the following section for prediction and variable
selection are stationary-transformed industrial production (Group 1), civilian unemploy-
ment rate (Group 2), 10 year treasury rate (Group 6), and CPI (Group 7). All four are

plotted from January 1960 to July 2017 in Figure 4.

6.1 Prediction

In this section, I describe the relative performance of lasso, Lo-boosting, regression tree
boosting, and elastic net. I also illustrate a regression tree used in the non-linear tree
boosting procedure and describe the resistance of overfitting that non-linear boosting
displays compared to lasso.

The forecasting model used in this section is as follows. y; is one of the four outcome se-

ries plotted in Figure 4 and z;, the set of explanatory variables, are stationary-transformed
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Figure 4: Transformed Target Variables
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variables calculated from the raw data provided in Fred-MD.

K V K
100y;4n = Boo + Z OpYi—k + Z Z BikTi,(t—k) + €Ei+h, t=1...T (6.1)
k=0

i=1 k=0

with K = 3. The AR(1) and random walk baseline models are as follows:

100ys4+n = Bo + ays + €1 (6.2)

where a = 1 for the random walk model and is unrestricted for the AR(1) model.

I compute direct recursive forecasts for A =3 months, 6 months and 12 months for four
series in Fred-MD for a model that includes lags up to and including K = 3. The Mean
Squared Forecast Error (MSFE) is computed using one step ahead forecasts starting with

the first third of the data as follows:

2017:07-h )
(yt+h - yt+h)

MSFE(model) — t=1979:03
N )

where N is the number of one-step-ahead forecasts computed and ¢, is the estimated
direct h month ahead forecast from a model trained with regularization parameters se-
lected by cross-validation on the subsample of the data from 1960:01 to month ¢ — 1.

I presented the more general version of gradient boosting in Section 3. This is easily
adapted to adding more complex base learners other than single variable regression or
different loss functions other than Lo-loss. The most well-known versions of boosting use
decision trees or regression trees for classification and prediction. Given in other domains
the most successful application of boosting has been as a non-linear classifier and predictor,
I have also included the results for boosting regression trees of depth 2, which allows for
interaction terms between variables and captures non-linearities in the data generating
process. The results for lasso, elastic net, Lo-boosting, tree boosting, and the random walk

baseline are presented in Table 6. For all models except tree boosting, I cross validate
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at every step